Assessing assisted migration as a climate change adaptation strategy for Ontario’s forests:

Project overview and bibliography
Climate change will affect all MNR programs and the natural resources for which it has responsibility. This strategy confirms MNR’s commitment to the Ontario government’s climate change initiatives such as the Go Green Action Plan on Climate Change and outlines research and management program priorities for the 2011-2014 period.

Theme 1: Understand Climate Change
MNR will gather, manage, and share information and knowledge about how ecosystem composition, structure and function – and the people who live and work in them – will be affected by a changing climate. Strategies:
• Communicate internally and externally to build awareness of the known and potential impacts of climate change and mitigation and adaptation options available to Ontarians.
• Monitor and assess ecosystem and resource conditions to manage for climate change in collaboration with other agencies and organizations.
• Undertake and support research designed to improve understanding of climate change, including improved temperature and precipitation projections, ecosystem vulnerability assessments, and improved models of the carbon budget and ecosystem processes in the managed forest, the settled landscapes of southern Ontario, and the forests and wetlands of the Far North.
• Transfer science and understanding to decision-makers to enhance comprehensive planning and management in a rapidly changing climate.

Theme 2: Mitigate Climate Change
MNR will reduce greenhouse gas emissions in support of Ontario’s greenhouse gas emission reduction goals. Strategies:
• Continue to reduce emissions from MNR operations though vehicle fleet renewal, converting to other high fuel efficiency/low-emissions equipment, demonstrating leadership in energy-efficient facility development, promoting green building materials and fostering a green organizational culture.
• Facilitate the development of renewable energy by collaborating with other Ministries to promote the value of Ontario’s resources as potential green energy sources, making Crown land available for renewable energy development, and working with proponents to ensure that renewable energy developments are consistent with approval requirements and that other Ministry priorities are considered.
• Provide leadership and support to resource users and industries to reduce carbon emissions and increase carbon storage by undertaking afforestation, protecting natural heritage areas, exploring opportunities for forest carbon management to increase carbon uptake, and promoting the increased use of wood products over energy-intensive, non-renewable alternatives.
• Help resource users and partners participate in a carbon offset market, by working with our partners to ensure that a robust trading system is in place based on rules established in Ontario (and potentially in other jurisdictions), continuing to examine the mitigation potential of forest carbon management in Ontario, and participating in the development of protocols and policies for forest and land-based carbon offset credits.

Theme 3: Help Ontarians Adapt
MNR will provide advice and tools and techniques to help Ontarians adapt to climate change. Strategies include:
• Maintain and enhance emergency management capability to protect life and property during extreme events such as flooding, drought, blowdown and wildfire.
• Use scenarios and vulnerability analyses to develop and employ adaptive solutions to known and emerging issues.
• Encourage and support industries, resource users and communities to adapt, by helping to develop understanding and capabilities of partners to adapt their practices and resource use in a changing climate.
• Evaluate and adjust policies and legislation to respond to climate change challenges.
Assessing assisted migration as a climate change adaptation strategy for Ontario’s forests:
Project overview and bibliography

Ngaire Eskelin, William C. Parker, Stephen J. Colombo, and Pengxin Lu

Ontario Forest Research Institute
Applied Research and Development Branch
1235 Queen St. East, Sault Ste. Marie, ON P6A 2E5

2011
Main entry under title:
Assessing assisted migration as a climate change adaptation strategy for Ontario’s forests [electronic resource]: project overview and bibliography

(Climate change research report ; CCRR-19)
Includes bibliographical references and index.
Includes summary in French.
Electronic resource in PDF format.
Issued also in printed form.
ISBN 978-1-4435-6560-8

SD146.O5 A88 2011 634.9’56509713 C2011-964011-2

© 2011, Queen's Printer for Ontario
Printed in Ontario, Canada

Single copies of this publication are available from:

Applied Research and Development
Ontario Forest Research Institute
Ministry of Natural Resources
1235 Queen Street East
Sault Ste. Marie, ON
Canada P6A 2E5

Telephone: (705) 946-2981
Fax: (705) 946-2030
E-mail: information.ofri@ontario.ca

Cette publication hautement spécialisée Assessing assisted migration as a climate change adaptation strategy for Ontario’s forests: Project overview and bibliography n’est disponible qu’en Anglais en vertu du Règlement 411/97 qui en exempte l’application de la Loi sur les services en français. Pour obtenir de l’aide en français, veuillez communiquer avec le ministère de Richesses naturelles au information.ofri@ontario.ca.

This paper contains recycled materials.
Summary

Assisted migration of tree species populations, or seed sources, is one of few adaptive strategies available to mitigate the projected effects of climate change on the structure, productivity, and distribution of forest ecosystems. In this report, we present the goals and objectives of a study initiated in 2008 to assess the potential of assisted migration as an adaptation strategy to manage for climate change in Ontario. In support of this study, we conducted a literature search on assisted migration and genetic variation in climatic response of forest tree species, through which we identified several hundred related scientific and technical publications. Citations and keywords for publications of greatest significance to using assisted migration as a climate change adaptation strategy are presented in the accompanying bibliography.

Résumé

La migration assistée des groupements d’essences ou des origines des graines est l’une des rares stratégies d’adaptation disponibles pour atténuer les effets projetés des changements climatiques sur la structure, la productivité et la distribution des écosystèmes forestiers. Dans ce rapport, nous présentons les buts et les objectifs d’une étude entamée en 2008 afin d’évaluer le potentiel de la migration assistée comme stratégie d’adaptation afin de gérer les changements climatiques en Ontario. Afin de soutenir cette étude, nous avons effectué une recherche documentaire sur la migration assistée et les variations génétiques des essences forestières en réponse au climat, et nous avons identifié plusieurs centaines de publications scientifiques et techniques connexes. Les citations et les mots clés pour les publications les plus importantes pour utiliser la migration assistée comme stratégie d’adaptation des changements climatiques sont présentés dans la bibliographie d’accompagnement.
Acknowledgements

We thank the following individuals for their contributions to this report: Shelley Hanninen and Nancy-Jean Dukes assisted in the search and collection of literature; Paul Gray reviewed an earlier version of the report, Lisa Buse edited the report, and Trudy Vaittinen provided the report design and layout. This project was supported by MNR's climate change program under the auspices of project CC-09-10-030.
Contents

Summary ..1
Résumé ..1
Acknowledgements ...II
Introduction ...1
 Project overview ..2
 Literature search and bibliography ..3
Literature cited ...5
Bibliography ...7
Index ..41
Introduction

Recent climatic warming is likely associated with human activity and rapid increases in atmospheric concentration of CO$_2$ and other greenhouse gases (IPCC 2007). If heavy reliance on fossil fuel sources of energy with high CO$_2$ emissions continues, Ontario’s average winter temperatures will increase by 4 to 7°C from 2041 to 2070, and summer temperatures will increase by about 3°C relative to historical climate normals (1971-2000). Based on global climate models (GCMs), projected changes in winter and summer precipitation will range from +39 to +50% and -10.6 to +11.1%, respectively. The occurrence of extreme climatic events such as summer drought and periods of heavy precipitation are also expected to increase in frequency. Projected changes in climate and associated increases in natural disturbance are anticipated to affect the distribution, structure, function, productivity, management, and resilience of Ontario’s forest ecosystems (Lempièrè et al. 2008, Peach Brown 2009, Williamson et al. 2009). The development and implementation of a climate change adaptation strategy for Ontario’s forests is urgently needed, because many climate-induced ecological effects on northern forests are already being observed, and many are occurring faster than predicted (Parmesan 2006, IPCC 2007, Soja et al. 2007, OMNR 2010).

Climate is a primary factor controlling plant distribution (Woodward 1987). For boreal and northern temperate tree species, the annual growth cycle is timed to and regulated by climate, ensuring that the sequence of physiological and phenological events that occur during the periods of active growth and winter dormancy are synchronized to seasonal temperature patterns (Morgenstern 1996, Joyce et al. 2001, Howe et al. 2003). Within the range of most forest tree species, genetic variability and natural selection often result in differentiation of locally adapted tree populations along geographic gradients of environmental factors (Morgenstern 1996, Beaulieu and Rainville 2005). As a result, strong genotype-environment interactions are a common feature of forest species populations. Over the next 50 to 100 years, however, model projections for various emissions scenarios indicate that the “climatic envelope”, or area of suitable climatic habitat, of boreal and temperate tree species of North America will shift northward, upward in elevation, and change in size (Hamman and Wang 2006, McKenney et al. 2007, Iverson et al. 2008). As a consequence, tree species and populations will become increasingly unsynchronized with and maladapted to their prevailing environment (Rehfelt et al. 2001, St. Clair and Howe 2007, McKenney et al. 2007, Aitken et al. 2008, O’Neill et al. 2008). To reduce maladaptation and, ultimately, avoid extirpation from the landscape, plant populations must be able to adapt by a combination of phenotypic plasticity (i.e., acclimation), evolutionary adaptation (i.e., natural selection), and migration at rates adequate to keep pace with geographic shifts in climatic habitat (Rehfelt et al. 2001, Hamrick 2004, Aitken et al. 2008). Given the projected changes in climate over the next 100 years will most likely exceed the natural ability of populations to acclimate, adapt in place, or migrate (Rehfelt et al. 2001, Iverson et al. 2004, Neilson et al. 2005, Aitken et al. 2008), proactive human mediated transportation of tree species populations to more favourable climatic habitats may be a management option (Ledig and Kitzmiller 1992; Rehfelt et al. 1999, 2001; Beaulieu and Rainville 2005; Millar et al. 2007; Campbell et al. 2009b).

Assisted migration, the managed relocation of climatically adapted tree species populations, or seed sources, during reforestation (O’Neill et al. 2008, Marris 2009, McKenney et al. 2009) is viewed as a potentially important adaptive strategy to enhance or maintain the resilience and reduce the vulnerability of forest ecosystems to the stresses of climatic change (Millar et al. 2007, Campbell et al. 2009). An operational assisted migration program will depend on two kinds of information. First, high resolution, spatially explicit climate projections under selected emissions scenarios are needed to map future changes in climate. And second, genecology information is needed that can be used to identify climatic variables exerting strong selective pressure on natural populations, identify plant traits that respond to selective pressures, and develop

models to predict the appropriate seed source(s) for planting within a given future climatic location (St. Clair and Howe 2007, O’Neill et al. 2008, Rehfeldt and Jaquish 2010). For most forest species, research is needed to provide genealogy information.

Older existing and newly established provenance trials that expose multiple populations to a broad range in climatic conditions are being used to provide the data needed to assess the range and pattern of genetic variation in growth and adaptive traits of commercially important tree species (e.g., Wang et al. 2006, Thomson and Parker 2008, 2009). These field trials are sometimes supplemented with controlled environment studies for more detailed, rigorous measurement of population responses to environmental factors and their interaction (e.g., Thomson et al. 2010). When combined with GCM projections under selected emissions scenarios, these data can be used to generate population response and population transfer functions to guide assisted migration efforts (Rehfeldt et al. 1999; O’Neill et al. 2008; Thomson and Parker 2008, 2009; Rehfeldt and Jaquish 2010).

Project overview

Forests occupy 71.3 million ha of Ontario, or about two-thirds of the province’s total land area (OMNR 2006). These forest ecosystems provide myriad social, economic, and ecological benefits important to the well-being of the people of Ontario, including fibre, renewable energy, employment, recreational opportunities, and many ecological goods and services (e.g., habitat, soil formation and retention, climate regulation, carbon storage, and oxygen production) (MEA 2005, Williamson et al. 2009). Forest ecosystem functions, processes, and their capacity to provide these goods and services depend on their inherent natural biodiversity (MEA 2005, Mooney et al. 2009). Biodiversity is also an important component of ecological resilience or the ability of ecosystems to absorb and recover from natural and anthropogenic disturbances (Campbell et al. 2009b, Thompson et al. 2009, Gunderson et al. 2010). Therefore, erosion of biodiversity by climate change through extirpation of species and species populations is a serious threat to ecosystem resilience, sustainability, and continued provision of ecological goods and services (Campbell et al. 2009a, Mooney et al. 2009). Given the risk of extirpation of populations and loss of genetic diversity, management of genetic resources to maintain ecological resilience will be a key component of how successfully Ontario’s forests adapt to climate change (OMNR 2010).

Understanding the response of tree populations to climatic conditions is critical to all aspects of genetic resource management, whether in delineation of seed zones, establishment of conservation populations in protected areas, evaluating the potential for assisted migration of populations, or choosing seed sources for reforestation (Ledig and Kitzmiller 1992, Joyce et al. 2001, St. Clair and Howe 2007, Wang and Morgenstern 2009, Rehfeldt and Jaquish 2010, Vitt et al. 2010). Within the context of forest management for fibre production, genetic variation in morphological characteristics and adaptive traits within tree species provides the basis for policies on use of tree seed for forest regeneration (Morgenstern 1996, Joyce et al. 2001, Ying and Yanchuck 2006, McKenney et al. 2009). Currently, Ontario has 35 static seed zones that were initially established to ensure that planting stock was climatically adapted to the region in which it was deployed (Joyce et al. 2001, McKenney et al. 2009). However, unless recent and projected changes in climate become part of Ontario’s seed deployment policy, it is possible that forests being planted now will be maladapted to future temperature and precipitation conditions (McKenney et al. 2009).

Information on population-climate relationships for Ontario’s forest tree species is limited, hindering decisionmaking about the management of genetic resources in Ontario’s forests in a changing climate. In 2008, a study to evaluate the potential of assisted migration of tree species populations as a climate
change adaptation strategy for Ontario was initiated at the Ontario Forest Research Institute. The study objectives are to use and expand on existing research studies to (1) evaluate whether southern populations are necessarily the best choice for future climates; (2) identify populations with broad adaptability to a range of future climate conditions; (3) develop an approach to optimize seed source selection for reforestation to mitigate climate change; and (4) evaluate the potential for adaptation of populations through natural selection during natural regeneration compared to adaptation by planting selected seed sources. This study will provide baseline information about climate relationships for key forest species in Ontario that can be used to project how shifting climate envelopes will affect persistence of forest tree populations. As part of the study, we will also examine how commercially important species will respond to increasing temperature and elevated atmospheric CO$_2$, using a combination of provenance trial data and controlled environment studies. Existing provenance trials covering a range of climatic conditions can provide a first approximation of how well populations will adapt to climate. However, to extrapolate beyond the range of conditions in which existing field provenance trials were planted may require experiments in controlled environment chambers. For example, this approach could be used to develop population by temperature response functions for black spruce (Picea mariana (Mill.) BSP), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench) Voss), and other commercially important timber species based on seedling growth under varying temperature, moisture, and CO$_2$ treatments in controlled environment growth chambers. Controlled environment studies will also be useful to predict climatic responses for species lacking extensive existing provenance trials, such as red oak (Quercus rubra L.).

A general null hypothesis for the study is that "local seed sources will be best adapted to an area, regardless of the effects of global climate change." Thus, the general alternative hypothesis is that "climate change will result in non-local seed sources being better adapted to an area." Assuming climate change will result in local seed sources not being best adapted, the goal will be to develop a methodology for matching seed source to location based on climate projections. The "local is best" hypothesis will be tested using three approaches: (1) use existing provenance trial results to evaluate climate-seed source survival/growth relationships; (2) establish field plantings of multiple seed sources to expand on the information provided by existing provenance trials and to allow field assessment of the underlying ecophysiological basis for these relationships; and (3) conduct supplemental controlled environment studies allowing detailed examination of genetic response to temperature, atmospheric CO$_2$, and soil moisture.

Literature search and bibliography

The term “genecology”, first used by Turesson (1923), combines the words genetics and ecology and is defined as the study of genetic variation in relation to environment. Plant genecology research began almost 180 years earlier, however, with the report of differences in the seasonal timing of maturation among tobacco plants by Carolus Linnaeus in 1739 (Langlet 1971, Morgenstern 1996). Shortly thereafter, the importance of forest trees as raw material for ship building and naval power inspired the earliest applied research efforts in genecology of forest tree species. The scarcity of large, straight stemmed trees for use as ship masts by the French Navy and increasing awareness of geographic variation in plant traits instigated establishment of the pioneering forest provenance trials (1745-1755) of H.L. Duhamel du Monceau to compare stem form of Pinus sylvestris populations. Seed transfer recommendations to grow oak and pine of superior stem form for use in shipbuilding were issued by the Royal Swedish Admiralty in 1759 (Langlet 1971).

From a practical perspective, the most significant contribution of forest genecology research to forest management has been the development of quantitative tools to guide the geographic transfer and use of seed for regeneration (Morgenstern 1996, Ying and Yanchuk 2006, McKenney et al. 2009). More recently,
genecology research has focused on combining field and controlled environment assessment of genetic variation with climate model projections to move from static to more dynamic seed transfer guidelines needed in a changing climate. This research has relied heavily on older, range-wide forest provenance trials originally established to examine genetic variation in economically desirable and adaptive traits of commercially important species. By substituting spatial variation in climate among test sites for temporal trends, these trials are being used to predict provenance performance under future climate (Mátyás 1994; Schmidtling 1994; Carter 1996; Rehfeldt et al. 1999; Wang et al. 2006; Thomson and Parker 2008, 2009). In British Columbia, provenance trial data have been combined with future climate projections to modify seed transfer guidelines for several tree species to minimize the adverse effects of climate change (O’Neill et al. 2008). Because these trials focused on relatively few species of high commercial value, this source of information is lacking for many other, primarily hardwood, tree species.

At the same time as we began field and controlled environment studies to assess the need for and feasibility of assisted migration in Ontario, we conducted a literature search to identify scientific and technical reports on (1) genetic variation in climatic response of adaptive traits of forest tree species and (2) operational seed transfer and assisted migration of tree species populations. We used the databases Scopus, EBSCO, Metafore.ca, Falcon, and Google Scholar and confined the search to material published between 1900 and 2010. In addition, government publication listings and related bibliographies were used to find additional articles not identified via the search engines. The types of publications collected include peer-reviewed articles in scientific journals; government reports; books; conference, symposium, and workshop proceedings; graduate theses; and bibliographies. From this broad initial search, we selected literature relevant to assisted migration of seed sources as a climate change adaptation strategy and/or information on genecology of forest tree species. We identified 354 publications focused on tree species endemic to North America, as well as significant literature on genecology and assisted migration of non-native tree species relevant to the generic principles in our work. Literature citations are listed with keywords and a subject-based keyword index is included.
Literature cited

Bibliography

Literature citations included in the bibliography are numbered, presented in alphabetical order by author, and indexed using keywords. Keywords include the genus and species studied and/or reported on first, followed by the primary subject areas related to assisted migration that are addressed in the publication, listed in alphabetical order. Only scientific names are mentioned and indexed. Four keywords are used to refer to stem growth: height, diameter, radial, and volume. Diameter growth generally refers to studies of tree seedlings, while radial growth refers to reports on larger, older trees where tree ring analysis was conducted. The complete list of keywords is provided in the subject index that follows the bibliography.

 Acer rubrum, Cercis canadensis, Fraxinus pennsylvanica, Prunus serotina, Quercus rubra, drought resistance, gas exchange, light intensity, precipitation

 Pinus strobus, diameter growth, disease, height growth, insects, survival, volume growth

 Pinus resinosa, height growth, volume growth, wood properties

 Climate change, height growth, precipitation, survival

 Pseudotsuga menziesii, cold resistance, temperature

 Pseudotsuga menziesii, cold resistance, phenology, temperature

 Picea, Pinus, Populus, Quercus, climate change, cold resistance, drought resistance, elevated CO₂, height growth, phenology, photoperiod, precipitation, response/transfer function, temperature, water-use efficiency

 Juglans regia, diameter growth, height growth, phenology, precipitation, water-use efficiency

Pinus nigra, climate change, drought, phenology, precipitation, reproductive growth, temperature

Picea glauca, assisted migration, climate change, height growth, phenology, precipitation, temperature

Pinus sylvestris, cold resistance, temperature

Pseudotsuga menziesii, diameter growth, drought resistance, gas exchange, height growth, precipitation

Pseudotsuga menziesii, cold resistance, phenology, temperature

Pseudotsuga menziesii, cold resistance, temperature

Pseudotsuga menziesii, cold resistance, temperature

Pseudotsuga menziesii, diameter growth, drought resistance, height growth, precipitation

Pinus banksiana, disease, height growth, insects, survival

Betula pendula, precipitation, drought resistance, gas exchange, physiology, water-use efficiency

Pseudotsuga menziesii, cold resistance, phenology, precipitation, temperature

Populus grandidentata, *Populus tremuloides*, crown morphology, diameter growth, height growth, phenology, root growth, stem form

Populus deltoides, *Populus trichocarpa*, drought resistance, gas exchange, light intensity, photoperiod, precipitation, temperature, water-use efficiency

Acer rubrum, climate change, gas exchange, heat resistance, temperature

Acer rubrum, drought, gas exchange, physiology, precipitation, water-use efficiency

Picea mariana, breeding zone, height growth

Picea mariana, diameter growth, height growth, phenology, seed transfer, survival

Picea glauca, assisted migration, climate change, height growth, precipitation, seed transfer, temperature

Picea abies, *Pinus sylvestris*, cold resistance, phenology, photoperiod, seed transfer, temperature

Juglans nigra, diameter growth, disease, height growth, insects, leaf characteristics

Juglans nigra, cold resistance, crown morphology, diameter growth height growth, survival
 Juglans nigra, diameter growth, height growth, phenology, precipitation, temperature

 Picea glauca, climate change, heat resistance, height growth, temperature

 Picea mariana, biomass, climate change, cold resistance, diameter growth, elevated CO$_2$, gas exchange, height growth, light intensity, phenology, temperature

 Picea mariana, diameter growth, disease, height growth, insects, survival

 Quercus alba, *Quercus rubra*, gas exchange, temperature

 Salix, precipitation, biomass, drought resistance, height growth, leaf characteristics

 Pinus strobus, gas exchange, light intensity, photoperiod, temperature

 Pseudotsuga menziesii, drought resistance, precipitation, radial growth, wood properties

 Pinus albicaulis, cold resistance, phenology, temperature

 Picea mariana, height growth, survival

 Picea mariana, breeding zone, height growth

Acer pseudoplatanus, Betula pendula, Castanea sativa, Fagus sylvatica, Fraxinus excelsior, Quercus robur, Quercus petraea, climate change, drought, precipitation, response/transfer function, temperature

Fagus sylvatica, biomass, diameter growth, elevated CO$_2$, gas exchange, height growth, leaf area, temperature

Pinus, Picea, height growth, phenology, seed transfer, survival

Pseudotsuga menziesii, diameter growth, height, growth, phenology, precipitation, seed transfer, temperature

Pinus banksiana, biomass, climate change, elevated CO$_2$, gas exchange, height growth, soil, temperature, water-use efficiency

Betula papyrifera, cold resistance, height growth, temperature

Pinus contorta, cold resistance, disease, height growth, seed transfer, survival, temperature

Abies balsamea, Acer rubrum, Betula alleghaniensis, Fraxinus americana, Fraxinus pennsylvanica, Larix laricina, Picea glauca, Pinus banksiana, Pinus strobus, Prunus serotina, climate change, height growth, temperature

Larix laricina, diameter growth, height growth, survival

Larix laricina, diameter growth, height growth, survival

Pinus banksiana, height growth, phenology, photoperiod

Acer rubrum, *Acer saccharum*, *Fraxinus pennsylvanica*, *Larix laricina*, *Picea glauca*, *Picea mariana*, *Pinus banksiana*, *Pinus resinosa*, *Pinus strobus*, *Populus tremuloides*, *Quercus rubra*, climate change, precipitation, temperature

Picea glauca, height growth, precipitation, survival, seed transfer, temperature

Pseudotsuga menziesii, diameter growth, height growth, wood properties

Fagus sylvatica, phenology

Pinus taeda, crown morphology, light intensity

Pinus contorta, height growth, phenology, temperature

Betula pubescens, *Platanus xacerifolia*, *Populus tremula*, *Sambucus nigra*, phenology, seed transfer, temperature

Pinus contorta, *Pinus monticola*, height growth, phenology, temperature

Betula alleghaniensis, height growth, phenology

Betula alleghaniensis, cold resistance, diameter growth, height growth, phenology, survival

Quercus alba, Quercus robur, height growth, survival

Fraxinus americana, height growth, seed characteristics, seed transfer, survival

64) Close, D.C., N.J. Davidson, K.C. Churchill and R. Corkrey. 2010. Can climate at the seed source predict the success of eucalypts planted on sites that have been grazed for over 100 years? For. Ecol. Manage. 259: 1025-1032.

Eucalyptus, cold resistance, drought resistance, height growth, precipitation, survival, temperature

Populus tremuloides, climate change, diameter growth, drought, elevated CO$_2$, precipitation, radial growth

Assisted migration, climate change

Assisted migration, climate change, seed transfer

Picea mariana, heat resistance, temperature

Pinus pinaster, diameter growth, height growth, stem form, survival

Picea glauca, biomass, cold resistance, height growth, phenology, photoperiod

Picea glauca, biomass, cold resistance, height growth, phenology, photoperiod

Eucalyptus, biomass, survival, temperature
Abies, Acer, Betula, Fraxinus, Larix, Juniperus, Picea, Pinus, Populus, Prunus, Pseudotsuga, Quercus, Salix, Taxus, Thuja, Tsuga, climate change, height growth, survival

Pinus banksiana, breeding zone, seed transfer

Picea glauca, climate change, height growth, seed transfer

Pseudotsuga menziesii, climate change, drought, precipitation, radial growth, wood properties

Picea glauca, biomass, climate change, elevated CO$_2$, gas exchange, height growth, precipitation, temperature

Pinus strobus, disease

Pinus ponderosa, cold resistance, diameter growth, phenology

Assisted migration, climate change

Pinus strobus, diameter growth, height growth

Pinus strobus, diameter growth, height growth

Picea mariana, cold resistance, height growth, phenology, survival, temperature

Picea sitchensis, gas exchange, light intensity, photoperiod, temperature, wood properties

Pinus sylvestris, diameter growth, height growth, phenology, photoperiod, temperature, wood properties

Larix decidua, Larix kaempferi, Pinus contorta, Pinus sylvestris, Pseudotsuga menziesii, diameter growth, height growth, phenology, survival

Fagus sylvatica, Picea abies, biomass, diameter growth, elevated CO\textsubscript{2}, gas exchange, height growth, leaf characteristics, phenology, soil

Juglans nigra, cold resistance, phenology, temperature

Pinus elliottii, Pinus taeda, crown morphology, diameter growth, height growth, light intensity, phenology, precipitation, volume growth

Abies, Picea, climate change, precipitation, radial growth, temperature

Populus deltoides, biomass, diameter growth, height growth, precipitation, wood properties

Populus balsamifera, height growth, phenology

Populus, Populus balsamifera, Populus deltoides, Populus nigra, Populus tremula, Populus tremuloides, Populus trichocarpa, biomass, branching, cold resistance, crown morphology, disease, height growth, insects, phenology, photoperiod, temperature, volume growth, wood properties

Pinus pinaster, gas exchange, phenology, precipitation, water-use efficiency

Quercus rubra, cold resistance, temperature

Picea glauca, diameter growth, height growth, seed transfer

Pinus strobus, germination, temperature

Pinus strobus, cold resistance, disease, height growth, insects, survival

Pinus banksiana, Pinus resinosa, Pinus strobus, germination, temperature

Picea glauca, germination, temperature

Pinus strobus, cold resistance, height growth, survival, temperature

Pinus strobus, branching, diameter growth, height growth, stem form

Picea glauca, height growth

Gliricidia sepium, biomass, diameter growth, drought resistance, height growth, precipitation

Pinus strobus, branching, cold resistance, disease, height growth, insects, leaf characteristics, reproductive growth, stem form, survival, temperature

Pinus strobus, diameter growth, germination, height growth, leaf characteristics, phenology

Pinus strobus, disease, height growth, insects, survival

Pinus strobus, diameter growth, height growth, survival

Pinus strobus, height growth, phenology, survival

Betula alleghaniensis, *Juglans nigra*, *Prunus serotina*, *Quercus rubra*, cold resistance, temperature

Pinus taeda, diameter growth, drought resistance, height growth, precipitation, survival

Populus deltoides, *Populus nigra*, biomass, drought resistance, height growth, leaf area, precipitation

Picea abies, diameter growth, height growth, volume growth, wood properties
Picea, cold resistance, drought resistance, gas exchange, height growth, phenology, physiology

Acer saccharum, climate change, gas exchange, temperature

Populus, biomass, climate change, cold resistance, gas exchange, water-use efficiency

Picea glauca, diameter growth, height growth, reproductive growth, survival

Picea rubens, diameter growth, height growth, phenology

Picea glauca, diameter growth, height growth, survival

Picea mariana, height growth, survival

Alnus rubra, height growth, seed transfer, survival

Alnus rubra, breeding zones, height growth, phenology

Pinus contorta, climate change, height growth, temperature

Climate change, precipitation, survival, temperature

Tsuga heterophylla, cold resistance, height growth, phenology, temperature

Pseudotsuga menziesii, climate change, cold resistance, phenology, temperature,

Picea abies, diameter growth, height growth, survival

Seed transfer

Pseudotsuga menziesii, height growth, phenology, photoperiod

Pinus strobus, diameter growth, height growth, survival

Picea mariana, biomass, elevated CO$_2$, gas exchange, phenology, photoperiod, physiology

Picea mariana, gas exchange, height growth, phenology, physiology

Picea abies, climate change, cold resistance, phenology, photoperiod, reproductive growth, temperature

Picea abies, climate change, cold resistance, phenology, temperature

Larix occidentalis, Picea englemannii, Pinus contorta, Pinus monticola, Pinus ponderosa, Pseudotsuga menziesii, Thuja plicata, response/transfer functions, seed transfer

Assisted migration, climate change, disease, insects, phenology, physiology

Larix laricina, cold resistance, temperature

Pinus strobus, height growth, seed transfer, survival

Betula, Picea, Pinus, climate change, precipitation, temperature

Pinus brutia, cold resistance, height growth, phenology, temperature

Picea mariana, cold resistance, diameter growth, height growth, phenology, survival

Picea glauca, diameter growth, height growth, precipitation, temperature

Picea mariana, cold resistance, diameter growth, height growth, phenology, seed size, temperature

Picea mariana, diameter growth, height growth

Picea glauca, height growth, germination, seed characteristics, seed size

Picea mariana, cold resistance, height growth, phenology, precipitation, temperature

Pinus strobus, root growth

Pinus strobus, branching, diameter growth, height growth, leaf characteristics, survival

Pinus strobus, height growth, survival

Chamaecyparis lawsoniana, breeding zone, disease, height growth, seed transfer, survival

Assisted migration, climate change

Assisted migration, seed transfer

Quercus, cold resistance, drought, height growth, phenology

Acer saccharum, drought, height growth, phenology, stem form, temperature

Acer saccharum, drought resistance, root growth, stem form, survival, temperature

Acer saccharum, branching, cold resistance, drought resistance, heat resistance, height growth, phenology, stem form

Quercus, Quercus alba, Quercus rubra, cold resistance, drought resistance, height growth, phenology

Quercus rubra, height growth, radial growth

Picea abies, Picea glauca, Populus, diameter growth, height growth, survival

Pinus banksiana, climate change, gas exchange, height growth

Picea mariana, Pinus banksiana, Populus tremuloides, climate change, diameter growth, gas exchange

Pinus strobus, diameter growth, height growth, wood properties

Acer rubrum, Quercus alba, Quercus rubra, climate change, gas exchange, leaf characteristics, physiology, temperature

Pinus sylvestris, climate change, cold resistance, photoperiod, temperature

Picea glauca, height growth, soil

Picea glauca, diameter growth, height growth, phenology, precipitation, survival, temperature

Picea glauca, height growth, phenology, seed transfer

Abies balsamea, cold resistance, height growth, phenology, temperature

Picea engelmannii, Picea glauca, Picea sitchensis, Pinus contorta, Pseudotsuga menziesii, Thuja plicata, Tsuga heterophylla, cold resistance, heat resistance, temperature

Populus tremuloides, phenology, seed transfer, temperature

Picea glauca, height growth, phenology

Pinus strobus, height growth, phenology, seed transfer, survival

Picea abies, climate change, diameter growth, survival, temperature

Pinus sylvestris, height growth, survival

Populus tremuloides, elevated CO$_2$, gas exchange

Abies balsamea, Acer rubrum, Betula papyrifera, Fraxinus pennsylvanica, Larix laricina, Picea glauca, Picea mariana, Pinus banksiana, Pinus resinosa, Populus balsamifera, Populus tremuloides, Thuja occidentalis, climate change, cold resistance, height growth, temperature
 Climate change, diameter growth, height growth, precipitation, radial growth, survival, temperature

 Abies balsamea, height growth, phenology, precipitation, survival, temperature

 Pinus strobus, Pinus wallichiana, cold resistance, disease, temperature

 Pinus strobus, cold resistance, height growth, phenology, seed transfer

 Pinus strobus, cold resistance, seed transfer, temperature

 Pinus strobus, cold resistance, height growth, seed transfer, temperature

 Pinus strobus, Pinus wallichiana, disease, height growth, survival

 Abies alba, drought, precipitation, radial growth

 Quercus rubra, breeding zone, seed transfer, stem form

 Picea mariana, Picea rubens, climate change, elevated CO₂, light intensity, physiology

 Picea mariana, drought resistance, precipitation, water-use efficiency

Picea mariana, Picea rubens, biomass, diameter growth, germination, height growth, survival

Fraxinus americana, gas exchange, leaf characteristics, physiology, precipitation, radial growth, survival, temperature, water-use efficiency

Assisted migration, climate change, seed transfer

Pseudotsuga menziesii, climate change, diameter growth, drought, precipitation, radial growth, temperature, wood properties

Picea abies, Pinus banksiana, Pinus sylvestris, climate change, height growth, precipitation, response/transfer function, seed transfer, survival, temperature

Pinus contorta, climate change, height growth, phenology, precipitation, response/transfer functions, temperature

Pinus ponderosa, height growth, response/transfer function, seed transfer, survival, temperature

Drought resistance, response/transfer function

Pinus banksiana, height growth, photoperiod, seed transfer, survival, temperature

Quercus rubra, cold resistance, height growth, phenology, survival

Pseudotsuga menziesii, assisted migration, climate change, phenology, precipitation, seed transfer, temperature

Torreya taxifolia, assisted migration, climate change

Picea rubens, cold resistance, phenology, temperature

Pinus pinaster, gas exchange, physiology, temperature

Fagus sylvatica, drought resistance, precipitation, root growth

Pinus strobus, cold resistance, germination, height growth, leaf characteristics, photoperiod, temperature

Fraxinus pennsylvanica, diameter growth, drought resistance, height growth, precipitation

Acer rubrum, biomass, climate change, elevated CO$_2$, germination, height growth, survival

Populus deltoides, cold resistance, height growth, phenology, survival, temperature

Populus deltoides, *Populus trichocarpa*, biomass, drought resistance, leaf characteristics, precipitation, water-use efficiency

Picea mariana, biomass, drought resistance, phenology, photoperiod, precipitation, temperature

Picea mariana, biomass, drought, germination, phenology, physiology, precipitation, survival

Picea mariana, height growth, phenology, photoperiod, temperature

Larix leptolepis, Picea glauca, Picea mariana, Picea sitchensis, Pinus banksiana, Pinus contorta, Pinus elliottii, Pinus nigra, Pinus patula, Pinus radiata, Pinus sylvestris, Pinus taeda, Pinus virginiana, Populus deltoides, Pseudotsuga menziesii, Quercus rubra, cold resistance, diameter growth, disease, height growth, insects, light intensity, phenology, photoperiod, soil, survival, temperature

Picea glauca, cold resistance, phenology, photoperiod, temperature

Picea mariana, height growth, survival, temperature

Pinus banksiana, height growth

Abies, Alnus, Fagus, Picea, Pinus, Quercus, Thuja, diameter growth, disease, height growth, precipitation, temperature

Picea mariana, height growth

Pinus ponderosa, diameter growth, height growth, survival

Picea sitchensis, elevated CO$_2$, cold resistance, phenology, temperature
Picea glauca, height growth, phenology

Tsuga canadensis, cold resistance, height growth, temperature

Picea mariana, height growth, phenology

Betula pendula, cold resistance, gas exchange, ozone, temperature

Assisted migration, climate change, response/transfer functions, seed transfer

Pseudotsuga menziesii, cold resistance, drought resistance, precipitation, temperature

Picea engelmanni x *Picea glauca*, biomass, breeding zone, diameter growth, height growth, phenology, physiology, precipitation, seed transfer, soil, temperature

Pseudotsuga menziesii, cold resistance, phenology, temperature

Picea sitchensis x *Picea glauca*, insects, phenology, precipitation, temperature, wood properties

Assisted migration, climate change, response/transfer functions

Pinus contorta, assisted migration, climate change, diameter growth, height growth, response/transfer function, seed transfer, survival

Pinus contorta, height growth, response/transfer function, soil, temperature

Picea engelmannii x Picea glauca, height growth

Assisted migration, climate change, seed transfer

Abies amabilis, Abies lasiocarpa, Chamaecyparis nootkatensis, Larix occidentalis, Picea glauca, Picea sitchensis, Pinus contorta, Pinus monticola, Pinus ponderosa, Pseudotsuga menziesii, Thuja plicata, Tsuga heterophylla, assisted migration, climate change, response/transfer functions, seed transfer

Picea abies, reproductive growth, temperature

Acer platanoides, cold resistance, height growth, seed transfer, temperature

Picea mariana, cold resistance, height growth, phenology, seed transfer, survival, temperature

Assisted migration, climate change, elevated CO₂

Pinus banksiana, cold resistance, height growth, phenology, seed transfer, temperature

Picea mariana, breeding zone, height growth, survival

Picea mariana, height growth, phenology, precipitation, temperature

Picea mariana, cold resistance, height growth, phenology, precipitation, seed transfer, temperature

Pinus banksiana, height growth, phenology, seed transfer, temperature

Pinus banksiana, *Picea mariana*, height growth, phenology, seed transfer, soil

Pseudotsuga menziesii, assisted migration, climate change, cold resistance, phenology, temperature

Populus trichocarpa, height growth, photoperiod

Acer rubrum, germination, phenology, temperature

Fagus sylvatica, drought resistance, precipitation, water-use efficiency

Fagus sylvatica, drought resistance, gas exchange, physiology, precipitation

Eucalyptus, *Pinus*, *Populus*, biomass, elevated CO₂, gas exchange, wood properties

Picea mariana, height growth, phenology
Picea glauca, cold resistance, height growth, phenology, photoperiod, temperature

Picea glauca, *Picea mariana*, *Pinus banksiana*, elevated CO$_2$, germination, photoperiod, precipitation, temperature

Pinus resinosa, diameter growth, height growth, survival, volume growth

Quercus suber, drought resistance, leaf characteristics, precipitation, temperature, water-use efficiency

Quercus suber, climate change, drought, precipitation, seed size, survival

Fraxinus americana, *Pinus sylvestris*, breeding zone, height growth, survival

Larix occidentalis, cold resistance, disease, height growth, phenology, precipitation, survival, temperature

Picea, Pinus, Pseudotsuga, precipitation, seed transfer, temperature

Pinus monticola, cold resistance, height growth, phenology, temperature

Larix occidentalis, climate change, disease, height growth, phenology, precipitation, seed transfer, temperature

Larix, Picea, Pinus, height growth, phenology, temperature

Pinus contorta, response/transfer function, survival, temperature, volume growth

Pinus contorta, assisted migration, climate change, height growth, precipitation, response/transfer function, survival, temperature

Pinus sylvestris, climate change, height growth, survival, temperature

Betula pendula, biomass, climate change, diameter growth, elevated CO₂, leaf area, ozone, volume growth

Fraxinus americana, breeding zone, height growth, response/transfer function, seed transfer

Picea rubens, height growth, phenology, survival

Pinus radiata, drought resistance, gas exchange, precipitation, radial growth, water-use efficiency, wood properties

Pseudotsuga menziesii, radial growth, temperature, wood properties

Picea abies, drought, precipitation, radial growth, wood properties

Betula papyrifera, biomass, climate change, gas exchange, germination, height growth, root growth, temperature

Picea glauca, diameter growth, height growth, survival

Pinus banksiana, Pinus contorta, height growth, precipitation, response/transfer function, soil, survival, temperature

Picea glauca, climate change, diameter growth, drought, height growth, precipitation, response/transfer function, survival, temperature

Pinus pinaster, biomass, diameter growth, drought, height growth, root growth

Pinus strobus, height growth, phenology

Pinus sylvestris, climate change, cold resistance, phenology, survival, temperature

Pinus banksiana, precipitation, radial growth

Pinus banksiana, climate change, precipitation, radial growth, response/transfer function, temperature

Pinus banksiana, precipitation, radial growth, wood properties

Quercus alba, diameter growth, height growth

Picea abies, *Pinus*, *Pinus taeda*, height growth, response/transfer functions, temperature, survival, volume growth

Populus balsamifera, biomass, leaf area, photoperiod, root growth

Fraxinus americana, diameter growth, height growth, stem form, survival

Thuja, cold resistance, drought resistance, height growth, precipitation, seed transfer, temperature

Picea glauca, cold resistance, phenology, temperature

Betula papyrifera, cold resistance, phenology, seed transfer, temperature

Pinus strobus, biomass, diameter growth, height growth, survival

Pinus strobus, height growth, survival

Pinus, Pinus strobus, disease

Pinus monticola, height growth, precipitation, seed size

Larix occidentalis, Picea engelmannii, Pinus contorta, Pinus monticola, Pseudotsuga menziesii, Thuja plicata, breeding zone, seed transfer

Pseudotsuga menziesii, biomass, height growth, leaf area, radial growth, stem form, wood properties, volume growth

Pseudotsuga menziesii, branching, crown morphology, leaf area, leaf characteristics

Pseudotsuga menziesii, biomass, cold resistance, phenology, seed transfer, temperature

Pseudotsuga menziesii, climate change, phenology, precipitation, root growth, seed transfer, temperature

Pseudotsuga menziesii, climate change, phenology, precipitation, root growth, seed transfer, temperature

Picea abies, height growth

Pseudotsuga menziesii, diameter growth, drought resistance, height growth, phenology, precipitation, temperature

Tsuga canadensis, germination, phenology, photoperiod, temperature

Fraxinus pennsylvanica, height growth, survival

Picea glauca, biomass, cold resistance, germination, height growth, temperature

Picea engelmannii × *Picea glauca*, height growth

Pinus banksiana, biomass, drought, precipitation, temperature

Picea glauca, height growth, survival

Picea glauca, breeding zone, diameter growth, height growth, phenology, precipitation, seed transfer, survival, temperature

Pinus banksiana, climate change, diameter growth, height growth, response/transfer function, survival, temperature

Picea mariana, climate change, diameter growth, height growth, response/transfer function, survival, temperature

Pinus banksiana, climate change, exchange, physiology, temperature

Pinus banksiana, climate change, gas exchange, physiology, temperature

Acer rubrum, cold resistance, phenology, reproductive growth, temperature

Pseudotsuga menziesii, height growth, wood properties

Populus deltoides, Populus tremuloides, biomass, cold resistance, height growth, photoperiod

Pinus strobus, diameter growth, height growth, seed transfer, survival

Pinus banksiana, drought resistance, height growth, phenology, precipitation, seed transfer, temperature

Betula pendula, height growth, phenology, photoperiod, seed transfer, stem form, survival, temperature, volume growth

Castanea sativa, precipitation, temperature

Pinus hartwegii, assisted migration, climate change, cold resistance, height growth, phenology, seed transfer

Fagus sylvatica, cold resistance, precipitation, temperature

Climate change, seed transfer

Betula papyrifera, gas exchange, photoperiod, physiology, precipitation, temperature, water-use efficiency

Pinus contorta, drought resistance, gas exchange, height growth, phenology, physiology, precipitation, wood properties

Pinus contorta, assisted migration, climate change, response/transfer function, seed transfer, temperature

Pinus contorta, assisted migration, climate change, height growth, precipitation, response/transfer function, temperature

Pinus contorta, biomass, diameter growth, height growth, volume growth, wood properties

Pinus contorta, height growth, wood properties

Picea mariana, biomass, climate change, elevated CO$_2$, germination, height growth, seed size, soil, survival, temperature

Picea mariana, biomass, elevated CO$_2$, gas exchange, light intensity, phenology, photoperiod, survival, temperature

Larix laricina, biomass, diameter growth, height growth, soil

Picea mariana, diameter growth, height growth, cold resistance, phenology, photoperiod, precipitation, temperature

Pinus ponderosa, diameter growth, height growth, leaf characteristics, phenology, precipitation, temperature

Pinus strobus, height growth, survival

Acer saccharum, cold resistance, height growth, survival, temperature

Populus tremuloides, cold resistance, physiology, temperature

Pinus banksiana, height growth

Assisted migration, climate change, disease, insects, physiology

Fraxinus americana, cold resistance, height growth, temperature

Juglans nigra, height growth, leaf characteristics

Abies, Larix, Picea, Pinus, Pseudotsuga, cold resistance, height growth

Pinus strobus, height growth, temperature, survival

Betula, Eucalyptus, Fagus, Fraxinus, Larix, Picea, Pinus, Populus, Pseudotsuga, Quercus, sylvatica, Thuja, Tsuga, disease, height growth, phenology, precipitation, survival, temperature, wood properties

Pinus strobus, diameter growth

Populus trichocarpa, disease, height growth, phenology

Populus tremuloides, radial growth, wood properties

Pinus strobus, gas exchange, ozone

Pinus banksiana, biomass, cold resistance, frost resistance, photoperiod, temperature

Pinus banksiana, biomass, cold resistance, diameter growth, height growth, phenology survival, temperature

Pinus banksiana, cold resistance, disease, stem form, survival, temperature

Pinus contorta, crown morphology, diameter growth, disease, height growth, insects, stem form, survival

Climate change, seed transfer

Picea excelsa, drought resistance, cold resistance, germination, height growth, precipitation, root growth, soil, temperature

Pinus taeda, diameter growth, radial growth, wood properties

Pinus strobus, diameter growth, height growth

Pinus strobus, diameter growth, height growth
Index

insects 33, 93, 136, 337

Juglans 8, 28, 29, 30, 88, 110, 338

Juglans nigra 28, 29, 30, 88, 110, 338

Juglans regia 8

Juniperus 73

Larix 48, 49, 50, 52, 73, 86, 96, 135, 137, 176, 211, 233, 257, 260, 261, 292, 329, 339, 341

Larix decidua 86

Larix kaempferi 96

Larix larcinia 48, 49, 50, 52, 137, 176, 329

Larix leptolepis 211

Larix occidentalis 135, 233, 257, 292

leaf area 42, 112, 265, 283, 293, 295

leaf characteristics 28, 35, 87, 105, 106, 148, 163, 189, 203, 207, 254, 294, 331, 338

light intensity 1, 21, 32, 36, 56, 84, 89, 186, 211, 328

ozone 222, 265, 345

photoperiod 7, 21, 27, 36, 51, 70, 71, 84, 85, 93, 129, 131, 133, 164, 196, 203, 208, 210, 211, 212, 245, 251, 252, 283, 300, 313, 316, 321, 328, 330, 346

physiology 18, 23, 131, 132, 136, 163, 186, 189, 201, 209, 225, 249, 287, 309, 310, 321, 322, 336

Picea abies 27, 87, 110, 127, 133, 134, 159, 173, 192, 234, 270, 282, 298

Picea engelmannii 135, 169, 225, 292
<table>
<thead>
<tr>
<th>Species</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea excelsa</td>
<td>351</td>
</tr>
<tr>
<td>Picea rubens</td>
<td>118, 186, 188, 200, 267</td>
</tr>
<tr>
<td>Picea sitchensis</td>
<td>84, 169, 211, 218, 227, 232, 233, 303</td>
</tr>
<tr>
<td>Pinus abicaulis</td>
<td>38</td>
</tr>
<tr>
<td>Pinus brutia</td>
<td>140</td>
</tr>
<tr>
<td>Pinus contorta</td>
<td>47, 57, 59, 86, 123, 135, 169, 193, 211, 229, 230, 233, 262, 263, 273, 292, 322, 323, 324, 325, 326, 349</td>
</tr>
<tr>
<td>Pinus elliottii</td>
<td>89, 211</td>
</tr>
<tr>
<td>Pinus hartwegii</td>
<td>318</td>
</tr>
<tr>
<td>Pinus monticola</td>
<td>59, 135, 233, 259, 291, 292</td>
</tr>
<tr>
<td>Pinus nigra</td>
<td>9, 211</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>211</td>
</tr>
<tr>
<td>Pinus pinaster</td>
<td>69, 94, 201, 275</td>
</tr>
<tr>
<td>Pinus ponderosa</td>
<td>79, 135, 194, 217, 233, 331</td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>211, 268</td>
</tr>
<tr>
<td>Pinus resinosa</td>
<td>3, 52, 99, 176, 253</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>11, 27, 85, 86, 164, 174, 192, 211, 256, 277</td>
</tr>
<tr>
<td>Pinus taeda</td>
<td>56, 89, 111, 211, 282, 352</td>
</tr>
<tr>
<td>Pinus virginiana</td>
<td>211</td>
</tr>
<tr>
<td>Pinus wallichiana</td>
<td>179, 183</td>
</tr>
<tr>
<td>Platanus xacerfolia</td>
<td>58</td>
</tr>
<tr>
<td>Populus</td>
<td>7, 20, 21, 52, 58, 6, 73, 91, 92, 93, 112, 116, 159, 161, 170, 175, 176, 206, 207, 211, 245, 249, 283, 313, 334, 341, 343, 344</td>
</tr>
<tr>
<td>Populus balsamifera</td>
<td>92, 93, 176, 283</td>
</tr>
<tr>
<td>Populus deltoides</td>
<td>21, 91, 93, 112, 206, 207, 211, 313</td>
</tr>
<tr>
<td>Populus grandidentata</td>
<td>20</td>
</tr>
<tr>
<td>Populus nigra</td>
<td>93, 112</td>
</tr>
<tr>
<td>Populus tremula</td>
<td>58, 93</td>
</tr>
<tr>
<td>Populus tremuloides</td>
<td>20, 52, 65, 93, 161, 170, 175, 176, 313, 334, 344</td>
</tr>
<tr>
<td>Populus trichocarpa</td>
<td>21, 93, 207, 245, 343</td>
</tr>
</tbody>
</table>

Prunus 1, 48, 73, 110
Prunus serotina 1, 48, 110
Pseudotsuga 5, 6, 7, 12, 13, 14, 15, 16, 19, 37, 44, 54, 73, 76, 86, 126, 129, 135, 169, 191, 198, 211, 224, 226, 233, 244, 258, 269, 292, 293, 294, 295, 296, 297, 299, 312, 339, 341
Pseudotsuga menziesii 5, 6, 7, 12, 13, 14, 15, 16, 19, 37, 44, 54, 73, 76, 86, 126, 129, 135, 169, 191, 198, 211, 224, 226, 233, 244, 258, 269, 292, 293, 294, 295, 296, 297, 299, 312
Quercus 1, 7, 34, 41, 52, 62, 73, 95, 110, 157, 158, 163, 185, 197, 211, 215, 254, 255, 281, 341
Quercus alba 34, 62, 157, 163, 281
Quercus petraea 41
Quercus robur 41, 62
Quercus rubra 1, 34, 52, 95, 110, 157, 158, 163, 185, 197, 211
Quercus suber 254, 255
radial growth 37, 65, 76, 90, 158, 177, 184, 189, 191, 268, 269, 270, 278, 279, 280, 293, 344, 352
reproductive growth 105, 117, 133, 234, 311
root growth 20, 147, 155, 202, 271, 275, 283, 297, 351
Salix 35, 73
Sambucus nigra 58
seed characteristics 63, 145
seed size 143, 145
soil 45, 87, 165, 211, 225, 230, 243, 273, 327, 329, 349
stem form 20, 69, 102, 105, 154, 155, 156, 185, 284, 293, 316, 348, 349
Taxus 73

Thuja 73, 125, 135, 169, 176, 215, 233, 285, 293, 341
Thuja occidentalis 176
Thuja plicata 135, 169, 233, 293
Torreya taxifolia 199
Tsuga 73, 125, 169, 220, 233, 300, 341
Tsuga canadensis 220, 300
Tsuga heterophylla 125, 169, 233
volume growth 2, 3, 89, 93, 113, 253, 262, 265, 282, 293, 316, 325
water-use efficiency 7, 8, 18, 21, 23, 45, 94, 116, 187, 189, 207, 247, 254, 268, 321
wood properties 3, 37, 54, 76, 84, 85, 91, 93, 113, 162, 191, 227, 249, 268, 269, 270, 280, 293, 312, 322, 325, 326, 341, 344, 352
Climate Change Research Publication Series

Reports

CCRR-09 Varrin, R. J. Bowman and P.A. Gray. 2007. The Known and Potential Effects of Climate Change on Biodiversity in Ontario’s Terrestrial Ecosystems: Case Studies and Recommendations for Adaptation.

Notes

